Transformed Root Cultures of Solanum dulcamara L.: A Model for Studying Production of Secondary Metabolites
نویسندگان
چکیده
Solanum dulcamara L. (dogwood or bitter sweet), Solanaceae, is one of the recommended species for growing in the temperate regions as a source of steroidal alkaloids. These alkaloids are suggested to be alternatives for diosgenin in the commercial production of steroidal pharmaceuticals (Mathé et al., 1986). Steroidal alkaloids like solasodine and its C25 epimer tomatidenol can be easily converted to pregdienolone which is an important intermediate in the synthesis of steroids (Sato et al., 1951). Solanum dulcamara L. exists in three chemovarieties that contain either solasodine, soladulcidine or tomatidenol glycosides (Willuhn, 1966). These Solanum alkaloids are always accompanied by varying quantities of their corresponding oxygen analogues, i.e. the neutral saponins. So, these chemovarities can be relisted as tomatidenol/yamogenin, solasodine/diosgenin and soladulcidine/tigogenin types (Hegnauer, 1989). The tomatidenol-producing taxa are found in the humid Atlantic climate of Western Europe, the soladulcidine type occurs in the drier continental climates while the solasodine variety is comparatively rare (J.R Mathé & I. Mathé, 1979). Only the solasodine and tomatidenol-producing varieties are of interest, but their productivity would not be comparable to that of other tropical or subtropical species as S. laciniatum. So, if this steroidal alkaloids content could be boosted by manipulation, S. dulcamara could be of interest for commercial growing due to its other qualities like fair cold hardiness, good growth on poor soils and perennial life cycle. An alternative approach was to produce these alkaloids intensively in vitro. Several Solanum species including S. dulcamara were the subject of many in vitro manipulations, but attempts, which involved techniques like cell suspension and callus cultures failed to achieve the target. Secondary metabolites production, in general, needs a certain degree of tissue differentiation, something that is obviously lacking in those in vitro systems (Ehmke & Eilert, 1993; Rhodes et al., 1987). A more promising technique has been introduced as an alternative to the classical cell
منابع مشابه
Essential Oils from Hairy Root Cultures and Field Cultivated Roots of Valerian (Valeriana sisymbriifolium)
Background: Plant cell cultivations are considered as an alternative to agricultural processes for producing valuable phytochemicals (secondary metabolites). The use of plant cell cultures has overcome several inconveniences for the production of secondary metabolites. Objective: The essential oils isolated from roots of 24-month-old field grown valerian (Valeriana sisymbriifolium) and hairy r...
متن کاملHairy Root Cultures of Hypericum perforatum L.; A Promising Method for The High Scale Production of Hypericin
Background: Biotechnologic methods are common for secondary metabolites production from the plants and other sources in pharmaceutical sciences. Hairy root cell lines as the biotechnologic method have been used for in vitro production of major plant metabolites. Objective: In this study, hairy roots of Hypericum Perforatum have been prepared using the seeds and bio transformed by bacteria. Fin...
متن کاملSecondary Metabolite Contents and Antioxidant Enzyme Activities of Cichorium intybus Hairy Roots in Response to Zinc
Hairy root systems are formed by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes. In most plants such as Cichorium intybus L., hairy root cultures have proven to be an efficient system for secondary metabolites production. The effect of Zinc (ZnSO4), a heavy metal, was investigated at different concentrations (0, 1, 5 and 10 mM) on some secondary metaboli...
متن کاملAgrobacterium Rhizogenes-mediated Transformation of Peganum multisectum (Maxim) Bobrov and Harmine Production in Hairy Roots
Using Agrobacterium rhizogenes due to create hairy roots is a useful method to product secondary metabolites in many medicinal plants. The transgenic hairy roots were induced from Peganum multisectum (Maxim) Bobrov a medicinally important species, by infecting leaf and stem explant with wild type Agrobacterium rhizogenes strain ATTCC 15834, which led to the induction of hairy roots from 19% of ...
متن کاملBio-elicitation of β-carboline alkaloids in Cell Suspension Culture of Peganum harmala L.
Background: Sustainable and commercial production of secondary metabolites is a critical issue when dealing with its clinical application. Efforts are still being made to look for biotic or abiotic elicitors with more efficient and universal effects on the improvement of secondary metabolites. Objective: In order to evaluate the suitability of different biotic elicitors on P. harmala L. cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017